A Quick Tour of Python

Perry Greenfield & Richard L. White

May 2, 2002
Space Telescope Science Institute
Email: help@stsci.edu
Abstract

This document serves as a whirlwind overview of the basics of Python. We hope it will give adventurous PyRAF
users a better idea of what is going on in the Python environment.

Contents
1 Pythonis Dynamic 2

2 Braces? We Don’'t Need No Stinking Braces! 2

3 Python Data Structures
3L SHINGS. . . o
32 LSS . . .
33 Mutability

a b wow

1 Python is Dynamic

Python is dynamically typed. You do not need to declare variables. You may simply assign to them, which creates the
variable. Variables may hold simpletypes (integers, floats, etc.), functions, and objects among other things.

x =1
nanme = "sanple string"
name2 = 'another sanple string’
named = """a multiline
string exanple"""
y =3.14
| ongi nt = 100000000000L
z = None

Note the last example. Python has a specia value called None. It isgenerally used to represent anull value. Variable
names are case sensitive. Variables can change type, simply by assigning them a new value of a different type.

1
"string val ue"

X
X

Typing avariable name by itself at the interactive prompt resultsin its value or information about it being printed out
(unless you are in PyRAF and type the name of an IRAF task, in which case CL emulation mode is entered and the
task runs with no command-line arguments). Unlike the IRAF CL, no equal-sign (=) is needed to inspect a Python

Theindiceseffectively mark the gaps between theitemsin the stringor list. Specifying 2: 4 means everything between
2 and 4. Python sequences (including strings) can be indexed in reverse order aswell. Theindex -1 represents the last
element, -2 the penultimate element, and so forth. If the first index in a dice is omitted, it defaults to the beginning
of the string; if the last is omitted, it defaultsto the end of the string. So s - 4:] contains the last 4 el ements of the
string (' ri ng’ inthe above example).

Strings can be concatenated using the addition operator

>>> print "hello" + " world"
"hello world’

And they can be replicated using the multiplication operator

>>> print "hello"*5
" hel | ohel | ohel | ohel | ohel | o’

There is also a string module (see below for more on modules) in the standard Python library. It provides many
additional operations on strings. In the latest version of Python (2.0), strings aso have methods that can be used for
further manipulations. For example s. fi nd(’ abc’) returns the (zero-based) index of the first occurence of the
substring’ abc’ instrings (-1if itisnot found.) The string module equivalentisstri ng. fi nd(s, ' abc’).

3.2 Lists

One can view lists as generalized, dynamically sized arrays. A list may contain a sequence of any legitimate Python
objects: numbers, strings functions, objects, and even other lists. The objectsin alist do not have to be the same type.
A list can be specifically constructed using square brackets and commas:

x =[1,4,9,"first three integer squares"]

Elements of lists can be accessed with subscriptsand slicesjust like strings. E.g.,

>>> x[2]

9

>>> x[2:]

[9,"first three integer squares"]

They can have items appended to them:

>>> x. append(’ new end of list’)
or
>>> x = x + ['new end of list'] #i.e., '+ concatenates lists
>>> X
[1,4,9,'first three integer squares’,’' new end of list’]

(Here # isthe Python comment delimiter.) Elements can be deleted and inserted:

>>> del x[3]

>>> X

[1, 4, 9, "new end of list’]

>>> x.insert(1l,’two’)

>>> X

[1, "two’, 4, 9, "new end of list’]

4 3 Python Data Structures

The product of alist and aconstant isthe result of repeatedly concatenating the list to itself:

>>> 2*x[0: 3]
[1, "two’, 4, 1, "two', 4]

>>> enployee_id = "ricky":11,"fred":12,"ethel": 15
>>> print enployee_id["fred"]
12

Note that braces are used to enclose dictionary definitions. New items are easily added:

>>> enpl oyee id["lucy"] = 16

will create anew entry.
There are many operations available for dictionaries; for example, you can get alist of all thekeys:

>>> print enpl oyee_id. keys()

if x =0:
print "did | really nmean to wite a never used print statenent?"

But thisislegal:

if x ==
print "nuch better”

5 Control Constructs

Python has if, for, and while control statements. The for statement is different than that in most other languages; it is
more likethef or each loopincsh. It takesthe following form:

for iteminitemist:
print item

The loop body is executed with a new value for the variable i t emfor each iteration. The values are taken from a
sequence-like object (such as a string, list, or tuple ... but other possibilities exist), and i t emis set to each of the
values in the sequence.

Note the colon after the statement — all statements that control the execution of a following block of statements
(includingfor, if, while, etc.) end with acolon.

To get the common loop over consecutive integers, use the built-inr ange function:

for i in range(100): print i

range(100) constructs alist of values from 0 to 99 (yes, 99!) and the for loop repeats 100 times with values of
i starting at 0 and ending at 99. The argument to r ange is the number of elements in the returned list, not the
maximum value. There are additional argumentstor ange if you want aloop that starts at a value other than zero or
that increments by a value other than 1.

6 Modules and Namespaces

You can import using an alternate form:

>>> from string inport *
>>> print capitalize(s)

Note that with thisform of import, you do not prepend the modul e name to the function name, which makes using the
capi t al i ze function abit more convenient. But this approach does have drawbacks. All the string module names
appear in the user namespace. | mporting many modules thisway greatly increases the possibility of name collisions.
If you import a module you are devel oping and want to reload an edited version, importing this way makes it very
difficult to reload (it's possible, but usually too tedious to be worthwhile). So, when debugging Python modules or
scripts interactively, don'tusef rom nmm i nport *!

A better way tousethefrom ... inport ... form of theimport statement is to specify explicitly which
names you want to import:

>>> from string inport capitalize
>>> print capitalize(s)

This avoids cluttering your namespace with functions and variables that you do not use. Namespaces in generd are
alarge and important topic in Python but are mainly beyond the scope of this quick overview. They are ubiquitous—
there are namespaces associated with functions, modules, and class instances, and each such object has alocal and a
global namespace.

7 Objects, Classes and What They Mean to You

If you are an object-oriented programmer, you'll find Python a pleasure to use: it provides a well-integrated object
model with pretty much al of the tools you expect in an object-oriented language. But nothing forces you to write
classes in Python. You can write traditiona procedural code just fine if you think OO stuff is for namby pamby
dweebs. Nonetheless, it is helpful to know a bit about it since many of the the standard libraries are written with
objectsin mind. Learning to use objectsis much easier than learning how to write good classes.

Typicdly an object is created by calling a function (or at least something that 1ooks like a function) and assigning the
return value to avariable. Thereafter you may access and modify attributes of the object (itslocal variables, in effect).
You can perform operations on the object (or have it perform actions) by calling its’ methods' . File handles provide a
good example of what we mean.

>>> fin = open(’input.txt’,’r’) # open file in read nmode and return file handle

>>> |ines = fin.readlines() # call a nethod that returns a list of lines

>>> for line in lines: print line

>>> print fin.nanme # print name of the file for the fin object
'nane’ is an attribute of the file object

>>> fin.close() # close the file

This approach is used by many Python libraries.

8 Defining Functions

Defining functionsis easy:

8 8 Defining Functions

def factorial (n):
"""a sinple factorial function with no overflow protection
if n:
return n*factorial (n-1)
el se:
return 1

Note that, like other code blocks, indentation is used to decide what belongs in the function body. Also note that
Python allows recursive functions.

The string at the beginning of the function is called a “doc string” and contains documentation information on the
function. It isavailable as the __doc __ attribute of thefunction, sopri nt factorial . __doc__ will print the

e Quick Python

